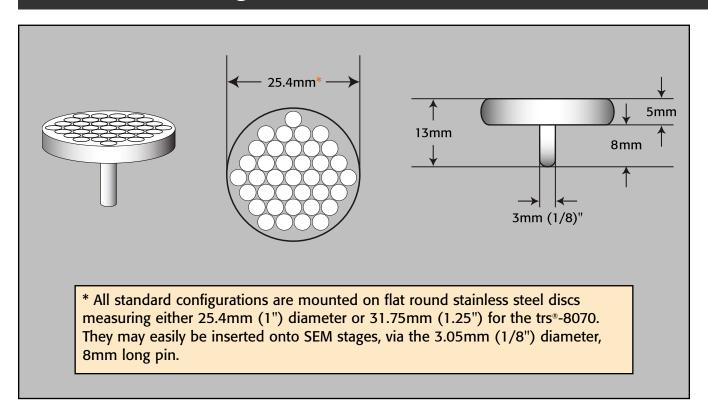
Table of Contents

Chapte	er 1 The tousimis reference standards™ Overview	2
Chapte	er 2 The tousimis reference standards [™] Individual Maps	4
	#8026 Periodic Table I - (elements from Li to Ge)	4
	#8027 Periodic Table II - (elements from Se to U)	5
	#8028 Periodic Table III - (elements not included in I and II)	6
	#8025 General Metallurgical - (40 elements represented)	7
	#8045 General Metallurgical - (42 elements represented)	8
	#8030 Biological - (21 elements represented in 19 niches)	9
	#8060 Special - for 38 individual standards	10
	NIST®-SRM # 481 Au-Ag Alloy System	11
	NIST®-SRM # 482 Au-Cu Alloy System	12
Chapte	er 3 Materials List for the tousimis reference standards [™]	13
	Aluminum - Cadmium	14
	Calcium - Dysprosium	15
	Flouirine - Lanthanum	16
	Lead - Nitrogen	17
	Oxygen - Selenium	18
	Silicon - Sulfur	19
	Tantalum - Zirconium	20
	Steel / Iron Alloys	21
	Aluminum, Lead/Tin, NB-Tungsten 20% Molybdenium, Brass, Gold/Silver	22
	Glass Standards	23
User's	Notes	24


CHAPTER 1

The tousimis reference standards[™] Overview

The **tousimis*** laboratories have developed and made available a complete spectrum of electron probe X-ray microanalysis reference standards for the TEM, STEM, SEM, and EXPM. Expertise acquired through forty years of experience working with microanalysis reference materials enables **tousimis*** to offer the most reliable calibration standards available. Elements/compounds of the highest purity are carefully selected in our laboratories, then painstakingly mounted and polished flat by a novel **tousimis*** laboratories procedure, and finally coated with spectrographically pure carbon for electroconductivity. Since these precision standards are polished to a high, flat finish, they can be used not only for qualitative microanalysis in the energy dispersive spectrometer, but also for precise take-off angle measurements quantitative analysis in both energy and wavelength systems.

trs® Standard Configuration

The tousimis reference standards™ Overview

On the following pages, please note the size and configuration of each **tousimis**® X-ray reference standard. All of the standards are in stock with the configuration shown except the #8060 and the new #8070. The #8060 and #8070 are "special"; in other words, you may choose the exact elements, compounds, or alloys that are best suited to your needs. An extensive listing of elements, compounds and alloys can be found on the following pages, all of which have been collected and analyzed during the many years of our involvement in the field. From this list you may choose each standard to create your "special" #8060 or #8070. Our experience of over forty years in the development of X-ray reference standards has allowed us to select and reselect only the finest elements, compounds, minerals and alloys available throughout the world.

Pure Elements (metals & semiconductors):

With purities up to 6-9's (99.9999%).

Natural Minerals

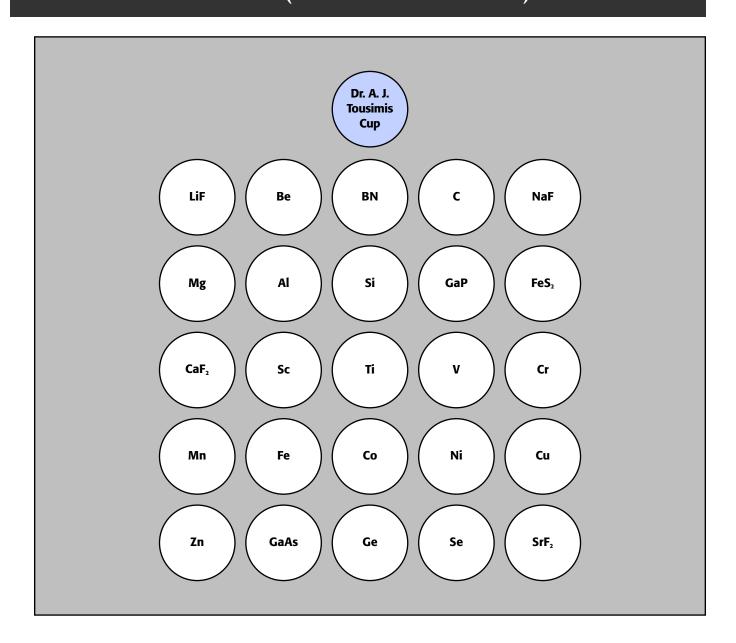
Selected from all over the world and chosen on the basis of their optical, chemical, x-ray diffraction, and electron probe x-ray microanalysis characteristics.

Synthetic

Minerals, compounds, and alloys suitable for x-ray microanalysis prepared by the latest technology.

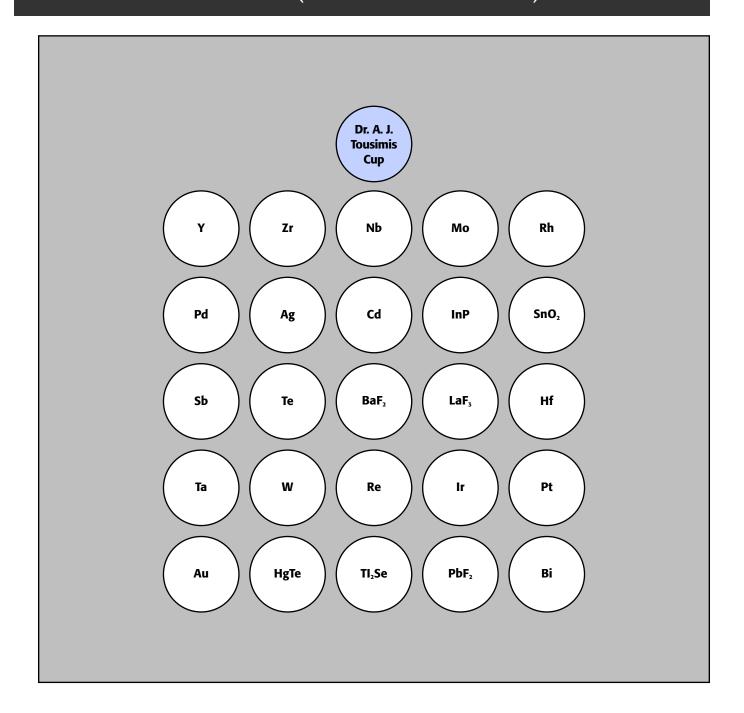
tousimis* can also prepare standards to your specifications for any x-ray microanalytical use whether it is in biology, mineralogy, or metallurgy. Please write or call.

tousimis[®] X-ray reference standards (trs[®]) are furnished with certificates of analysis in most cases. These analyses are based on at least 3 independent laboratory analyses with procedures and standardizations traceable to the US NIST or other laboratories.


Repolishing service of trs® is available; call or write to have us restore your old and used trs® standards, for a nominal charge. We will be assisting you with the X-ray reference standards and keeping you up-to-date with our ever growing collection via new acquisitions.

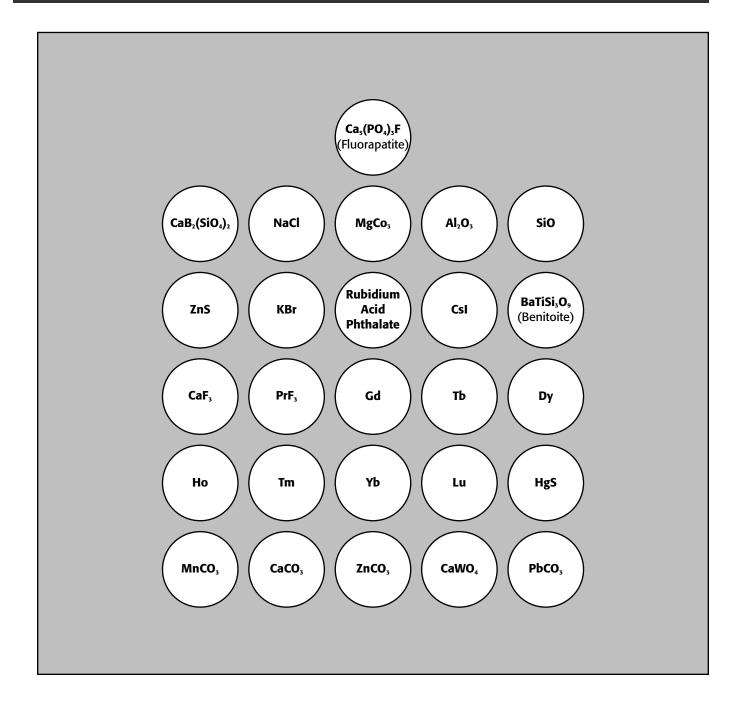
CHAPTER 2

tousimis reference standardsTM Individual Maps


#8026 Periodic Table I - (elements from Li to Sr)

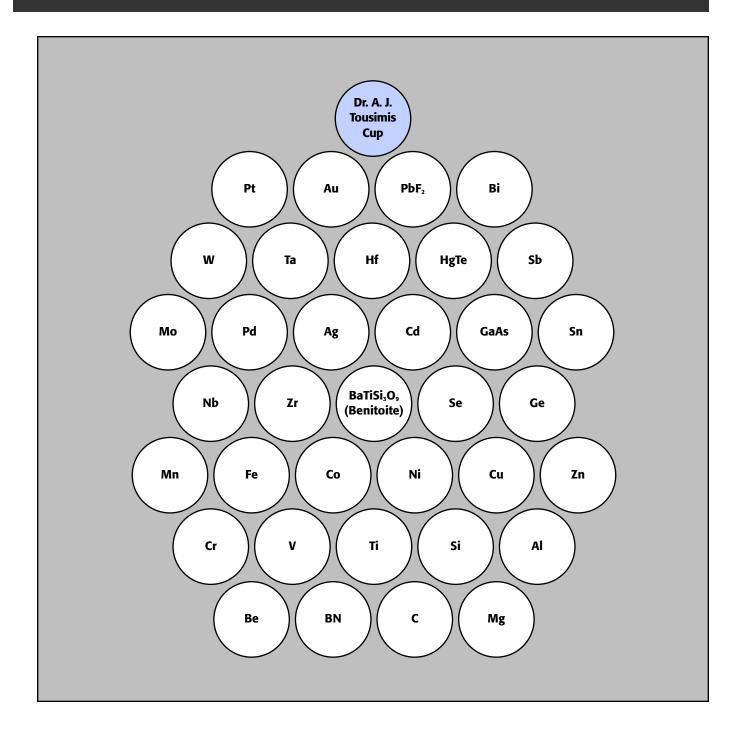
Mounted and polished on a stainless steel disc [diameter: 25.4 mm, height: 5 mm], with or without pin [diameter: 3 mm, length: 8 mm]. Please inquire for custom configuration.

Certification of all standards is furnished free of charge except for natural minerals: certifications are available at a nominal charge.


#8027 Periodic Table II - (elements from Se to U)

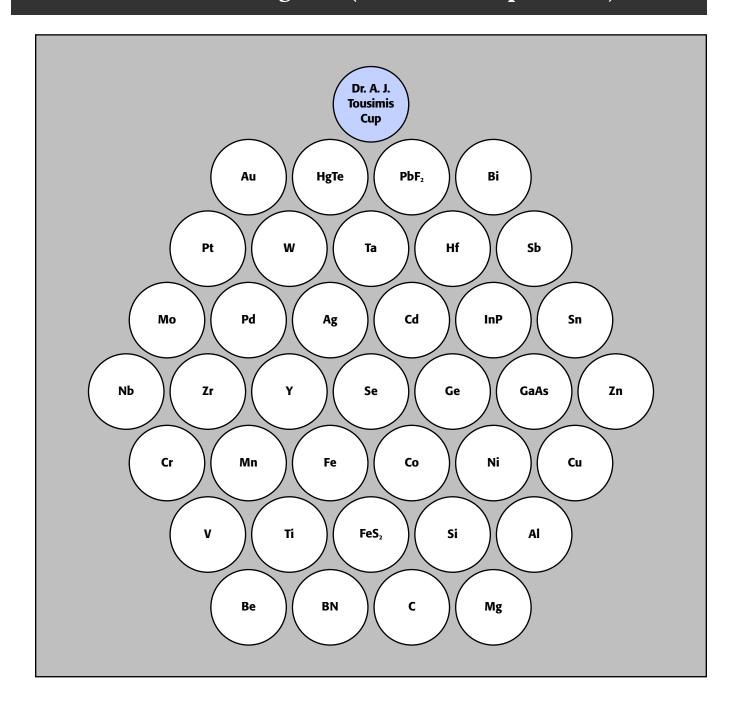
Mounted and polished on a stainless steel disc [diameter: 25.4 mm, height: 5 mm], with or without pin [diameter: 3 mm, length: 8 mm]. Please inquire for custom configuration.

Certification of all standards is furnished free of charge except for natural minerals: certifications are available at a nominal charge.


#8028 Periodic Table III - (elements not included in I and II)

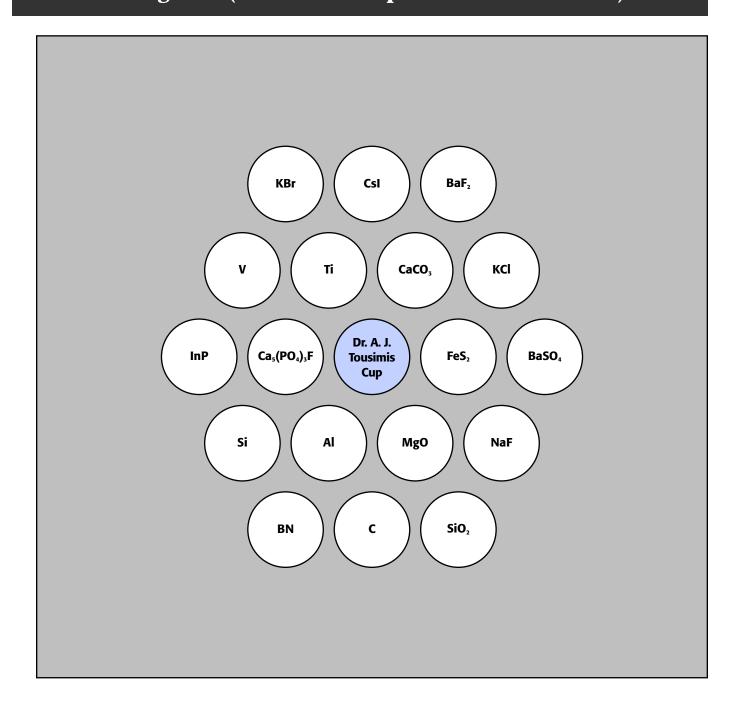
Mounted and polished on a stainless steel disc [diameter: 25.4 mm, height: 5 mm], with or without pin [diameter: 3 mm, length: 8 mm]. Please inquire for custom configuration.

Certification of all standards is furnished free of charge except for natural minerals: certifications are available at a nominal charge.


#8025 General Metallurgical - (40 elements represented)

Mounted and polished on a stainless steel disc [diameter: 25.4 mm, height: 5 mm], with or without pin [diameter: 3 mm, length: 8 mm]. Please inquire for custom configuration.

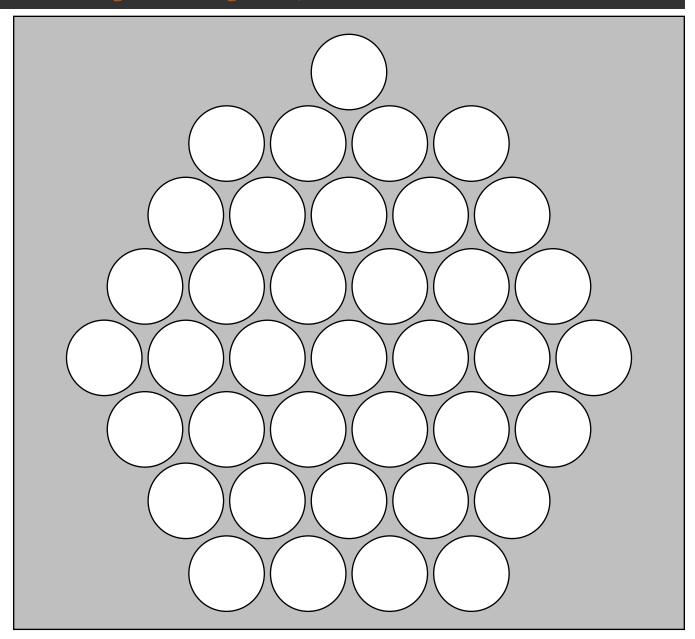
Certification of all standards is furnished free of charge except for natural minerals: certifications are available at a nominal charge.


#8045 General Metallurgical - (42 elements represented)

Mounted and polished on a stainless steel disc [diameter: 25.4 mm, height: 5 mm], with or without pin [diameter: 3 mm, length: 8 mm]. Please inquire for custom configuration.

Certification of all standards is furnished free of charge except for natural minerals: certifications are available at a nominal charge.

#8030 Biological - (21 elements represented in 18 niches)

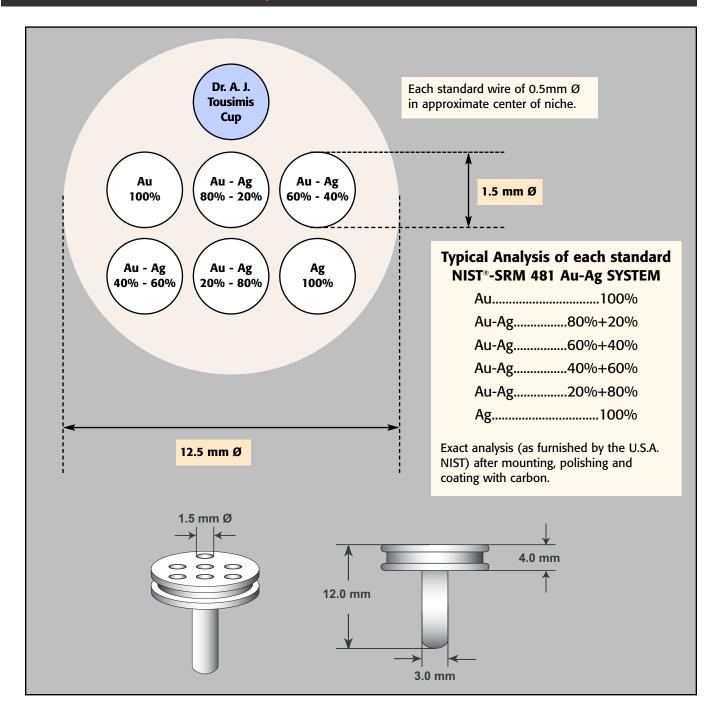


Mounted and polished on a stainless steel disc [diameter: 25.4 mm, height: 5 mm], with or without pin [diameter: 3 mm, length: 8 mm]. Please inquire for custom configuration.

Certification of all standards is furnished free of charge except for natural minerals: certifications are available at a nominal charge.

#8060 Custom - (for 38 individual standards)

Custom Design Your Configuration; Select Your Standards from Our Material List

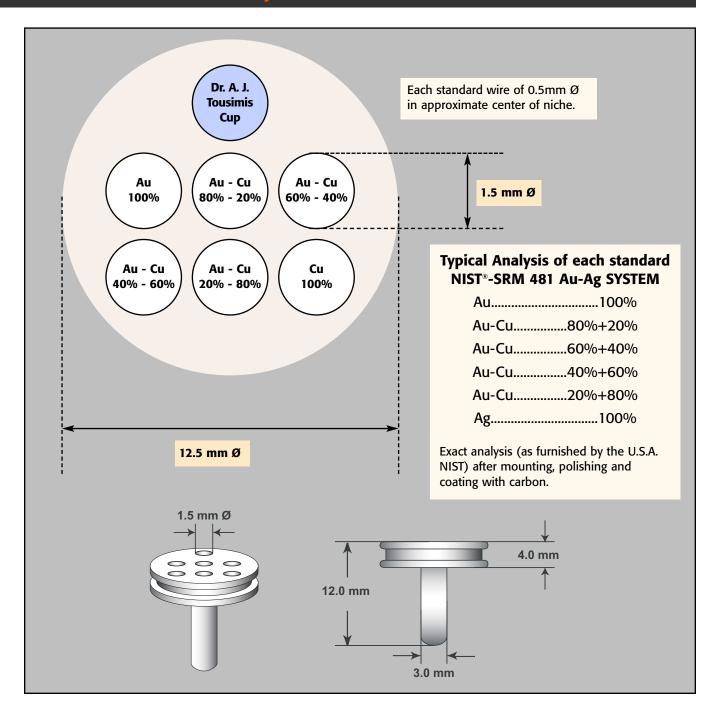

Fill in the above map with your choice of elements/compounds and alloys listed in the following pages. Arrange the map configuration you desire, and we will prepare the standard for you. Allow ten working days for shipping. The blank discs are 25.4mm (1") diameter, and 5mm thick, with or without mounting pin [please specify].

Mounted and polished on a stainless steel disc [diameter: 25.4 mm, height: 5 mm], with or without pin [diameter: 3 mm, length: 8 mm]. Please inquire for custom configuration.

Certification of all standards is furnished free of charge except for natural minerals: certifications are available at a nominal charge.

NIST®-SRM # 481 Pure Element Au-Ag Alloy System

For EDS & WDS Microanalysis



Mounted and polished on a stainless steel or Aluminum disc [diameter: 12.5 mm, height: 12 mm], with or without pin [diameter: 3 mm, length: 8 mm]. Please inquire for custom configuration.

Certification of all standards is furnished free of charge.

NIST®-SRM # 482 Pure Element Au-Cu Alloy System

For EDS & WDS Microanalysis

Mounted and polished on a stainless steel or Aluminum disc [diameter: 12.5 mm, height: 12 mm], with or without pin [diameter: 3 mm, length: 8 mm]. Please inquire for custom configuration.

Certification of all standards is furnished free of charge.

CHAPTER 3

Materials List for the tousimis reference standards™

These notes apply to all tousimis® x-ray reference standards listed in this catalog...

- 1. * Indicates hygroscopic and could be damaged by high electron fluxes.
- 2. ** Available at \$500.00 above the basic price of our catalog #8060.
- 3. *** These standards are of the highest purity currently available. Certificates of analyses are issued, as per order, at a nominal charge. Please inquire.
- 4. (n) designates a natural mineral while (s) designates a synthetic mineral. Certificates of analyses are issued at a nominal charge. Please inquire.
- 5. Single crystal materials (elements and compounds) are available upon request at much higher prices.
- 6. Uranium and Thorium compounds are available on special request. Radioactive materials handling charge (\$500.00) is required. If any elements or compounds are not listed, please inquire.
- 7. To average out the structural integrity of minerals, alloys, and glass standards, the investigator should analyze, using a $25\mu m$ radius electron beam, in at least three to ten randomly selected areas of the standard. Typical composition of the major elemental components for these standards are listed. A certificate of analysis will be issued with each X-ray reference standard as mounted and ready to use, on request at a nominal charge.
- 8. Whenever **NIST** is indicated, reference is to the National Institute of Standards and Technology, formerly known as NBS (U.S. National Bureau of Standards) A charge for holder fabrication is added.
- 9. ALCOA is a trademark of the Aluminum Company of America.
- 10. trs[®] is a trademark of tousimis research corporation.
- 11. Many of these X-ray reference standards can be custom mounted in the **trs®** #8060, or in any customer designed or desired holder. A charge for holder fabrication is added.
- 12. Certificates of analyses (traceable to NIST or other laboratories) are furnished free of charge for all pure metals and semiconductors. For natural minerals, alloys, and glasses, see previous notes.
- 13. Substitution and reconditioning service is available. Please call.

The tousimis® laboratories have been supplying the world's laboratories with X-ray reference standards since 1957.

We welcome you to our satisfied family of tousimis® x-ray reference standard users.

ALUMINUM (AI)		
Al		
KAlSi₃O ₈	(n)	
$NaAlSi_3O_8$	(n)	
$Fe_3Al_2(SiO_4)_3$	(n)	
Al_2O_3	(n),(**)	
Al_2O_3	(s)	
$Be_3Al_2Si_6O_{18}$	(n)	
$BeAl_2O_4$	(n)	
$Ca_3Al_2(SiO_4)_3$	(n)	
LiAlSi ₂ O ₆		

ANTIMONY (Sb)			
Sb			
Ag₃Sb	(n)		
InSb			
Ag_3Sb_3	(n)		
Sb_2O_3	(n)		
Ag_5SbS_4	(n)		
Sb_2S_3	(n)		

ARSEI	NIC (As)
As	
As_2Se_3	(***)
As_2Te_3	(***)
GaAs	
InAsS	
FeAsS	(n)
Co ₃ AsS ₄	(n)
$Pb_5(AsO_4)_3Cl$	(n)
$Pb_4Fe(AsO_4)_2Cl_4$	(n)
As_2S_3	(n)

BARIUM (Ba)			
$BaSO_4$	(n)		
BaF ₂			
$BaTiSi_3O_9$	(n)		

BERYLLIUM (Be)			
Be			
$Be_3Al_2Si_6O_{18}$	(n)		
BeAl ₂ O ₄	(n)		
Be ₂ SiO ₄	(n)		

BISMUTH (Bi)

Bi

BORON (B)		
B(special order only)(**)		
$Mg_3B_7O_{13}CI$	(n)	
BN		
$CaB_2(SiO_4)_2$	(n)	
B_2O_3	(*)	

	BROMINE (Br)
KBr	(*), (*** <u>)</u>
AgBr	(*), (***)
	CADMIUM (Cd)

Cd		
CdF ₂		
CdTe	(***)	

^{*} Indicates hygroscopic and could be damaged by high electron fluxes

^{**} Available at \$500.00 instead of the basic price of our catalog #8060

^{***} These standards are of the highest purity currently available. Certificates of analyses are issued, as per order, at a nominal charge. Please inquire.

⁽n) designates a natural mineral while (s) designates a synthetic mineral. Certificates of analyses for the natural(n) are issued at a nominal charge. Please inquire.

CALCI	UM (Ca)	
$Ca_{2}Fe_{2}(SiO_{4})_{3}$	(n)	
CaCO ₃	(n)	
$CaB_2(SiO_4)_2$	(n)	
CaF ₂	(n)	
CaF ₂		
CaSO ₄	(***)	
$CaMg(CO_3)_2$	(n)	
$Ca_5(PO_4)_3F$	(n)	
$Na_2Ca(SO_4)_3$	(n)	
$Ca_3Al(SiO_4)_3$	(n)	
$CaWO_4$	(n)	
CaTiSiO ₅	(n)	
CaSiO₃	(n)	

CARBON (C)		
C (pyrolytic	C (pyrolytic graphite)	
CaCO ₃	(n)	
PbClO ₃	(n)	
$CaMg(CoO_3)_2$	(n)	
$MgCO_3$	(n)	
$RbC_8H_5O_4$	(*), (***)	
FeCO ₃	(n)	
ZnCO ₃	(n)	
CERIUM (Ce)		
CeF ₃		
CeO ₂		

CESIUM (Cs)		
Csl	(*), (***)	
CHLORI	INE (Cl)	
$Mg_3B_7O_{13}Cl$ $NaCl$ $Pb_5(AsO_4)_2Cl_4$ $Pb_4Fe(AsO_4)_2Cl_4$ KCl $Pb_5(PO_4)_3Cl$ $Pb_5(VO)_3Cl$	(n) (n), (*) (n) (n) (*), (***) (n) (n)	
CHROMI	IUM (Cr)	
Cr Cr_2O_3 $PbCrO_4$		
COBAL	.T (Co)	
Co CoAsS	(n)	
СОРРЕ	R (Cu)	
Cu Cu₂S CuS Cu₂O Cu₃AsS₄	(n) (n) (n) (n)	
DYSPROSIUM (Dy)		
Dy		

^{*} Indicates hygroscopic and could be damaged by high electron fluxes

^{**} Available at \$500.00 instead of the basic price of our catalog #8060

^{***} These standards are of the highest purity currently available. Certificates of analyses are issued, as per order, at a nominal charge. Please inquire.

⁽n) designates a natural mineral while (s) designates a synthetic mineral. Certificates of analyses for the natural(n) are issued at a nominal charge. Please inquire.

FLO	URINE (F)		
BaF ₂			
CaF ₂	(n)		
CaF ₂			
CdF_2			
CeF₃			
$Ca_5(PO_4)_3F$	(n)		
LaF ₃			
PbF ₂			
LiF	(***)		
MgF ₂			
NdF_3			
PrF ₃			
NaF			
SrF ₂			
GADOI	LINIUM (Gd)		
Gd			
GAL	GALLIUM (Ga)		
GaAs			
GaP			
	ABILLIBA (Co)		
GERM	ANIUM (Ge)		
GERM.	ANIUW (Ge)		
	ANIUM (Ge)		
Ge GeTe	OLD (Au)		
Ge GeTe			
Ge GeTe G C			

HOLMIUM (Ho)	
Но	
INDIU	M (In)
InSb InAs InP	
IODII	NE (I)
Csl	(*), (***)
IRIDIU	JM (Ir)
lr	(**)
IRON	l (Fe)
Fe	
$Fe_3Al_2(SiO_4)_3$	(n)
$Ca_3Fe_2(SiO_4)_3$	(n)
FeAsS	(n)
Fe ₂ O ₃	(n)
FeTiO ₃	(n)
Fe ₃ O ₄	(n)
$Pb_4Fe(AsO_4)_2Cl_4$	(n)
FeS ₂	(n)
FeCO ₃	(n)
LANTHAI	NUM (La)
LaF ₂	

^{*} Indicates hygroscopic and could be damaged by high electron fluxes

^{**} Available at \$500.00 instead of the basic price of our catalog #8060

^{***} These standards are of the highest purity currently available. Certificates of analyses are issued, as per order, at a nominal charge. Please inquire.

⁽n) designates a natural mineral while (s) designates a synthetic mineral. Certificates of analyses for the natural(n) are issued at a nominal charge. Please inquire.

LEAD (Pb)		
PbSO ₄	(n)	
PbCO ₃	(n)	
PbCrO₄	(n)	
PbS	(n)	
PbSe		
PbTe		
$Pb_{5}(AsO_{4})_{3}CI$	(n)	
$Pb_4Fe(AsO_4)_3Cl$	(n)	
$Pb_{5}(VO_{4})_{3}CI$	(n)	
$PbMoO_4$	(n)	

LITHIUM (Li)	
LiF	(***)
LiAlSi ₂ O ₆	(n)

	LUTETIUM (Lu)
Lu	(***)

MAGNESIUM (Mg)		
Mg		
$Mg_3B_7O_{13}CI$	(n)	
CaMgSi ₂ O ₆	(n)	
$CaMg(CO_3)_2$	(n)	
$MgSi_2O_6$	(n)	
$MgCO_3$	(n)	
MgF_2		
MgO		

MAN	IGANESE (Mn)	
Mn		
MnO	(n)	
MnCO ₃	(n)	
ME	RCURY (Hg)	
HgS	(n)	
HgTe		
MOLY	BDENUM (Mo)	
Мо		
PbMoO ₄	(n)	
NEO	DYMIUM (Nd)	
NdF_3		
NICKEL (Ni)		
Ni		
NI	OBIUM (Nb)	
Nb		
Nb_2O_5		
NI	TROGEN (N)	
BN		
Si_3N_4		

^{*} Indicates hygroscopic and could be damaged by high electron fluxes

^{**} Available at \$500.00 instead of the basic price of our catalog #8060

^{***} These standards are of the highest purity currently available. Certificates of analyses are issued, as per order, at a nominal charge. Please inquire.

⁽n) designates a natural mineral while (s) designates a synthetic mineral. Certificates of analyses for the natural(n) are issued at a nominal charge. Please inquire.

-21/1	V(25) (2)
OX	YGEN (O)
	s only. See alternate
	onates and silicates.
Al_2O_3	(n), (**)
Al_2O_3	
TiO ₂	
SnO ₂	
CeO ₂	
Cr ₂ O ₃	
BeAl ₂ O ₄	
PbCrO ₄	(n)
Cu ₂ O	(n)
FeTiO₃	(n)
Fe ₂ O ₃	(n)
MnO	(n)
MgO	
Nb_2O_5	
SiO ₂	(n)
SiO ₂	
Sb_2O_3	(n)
SiO	
TeO ₂	(***)
PbMoO ₄	(n)
PALLA	ADIUM (Pd)
Pd	
PHOS	PHORUS (P)
Ca ₅ (PO ₄) ₃ F	(n)
GaP	
InP	

PLATINUM (Pt)			
Pt			
РОТА	ASSIUM (K)		
KAlSi₃O ₈ KBr KCl	(n) (*), (***) (*), (***)		
PRASEC	DYMIUM (Pr)		
PrF ₃			
RHE	RHENIUM (Re)		
Re			
RHO	DIUM (Rh)		
Rh			
RUB	IDIUM (Rb)		
$RbC_8H_5O_4$	(s), (*),(***)		
SCAN	NDIUM (Sc)		
Sc	(***)		
SELENIUM (Se)			
Se As₂Se₃ PbSe Ti₂Se ZnSe	(***)		

 $Pb_5(PO_4)_3CI$

^{*} Indicates hygroscopic and could be damaged by high electron fluxes

^{**} Available at \$500.00 instead of the basic price of our catalog #8060

^{***} These standards are of the highest purity currently available. Certificates of analyses are issued, as per order, at a nominal charge. Please inquire.

⁽n) designates a natural mineral while (s) designates a synthetic mineral. Certificates of analyses for the natural(n) are issued at a nominal charge. Please inquire.

SILIC	CON (Si)	
Si		
KAlSi₃O ₈	(n)	
$NaAlSi_3O_8$	(n)	
$Fe_3Al_2(SiO_4)_3$	(n)	
$Ca_3Fe_2(SiO_4)_3$	(n)	
BaTiSi ₃ O ₉	(n)	
$CaB_2(SiO_4)_2$	(n)	
$CaMgSi_2O_6$	(n)	
$Mg_2Si_2O_6$	(n)	
$Ca_3Al_2(SiO_4)_3$	(n)	
Be ₂ SiO ₄	(n)	
SiO ₂	(n)	
SiO ₂		
SiO		
Si_2N_4		
LiAlSi ₂ O ₆	(n)	
CaTiSiO₅	(n)	
CaSiO ₃	(n)	
ZrSiO ₄	(n)	
SILV	ER (Ag)	
Ag		
Ag ₂ S	(n)	

SODIUN	1 (Na)
NaAlSiO ₈	(n)
$Na_2Ca(SO_4)_2$	(n)
NaCl	(n), (*)
NaF	(*)
STRONTIL	JM (Sr)
SrSO₄	(n)
SrF ₂	
SULFU	R (S)
Ag₂S	(n)
PbSO ₄	(n)
FeAsS	(n)
$BaSO_4$	(n)
CaSO₄	(n)
Cu ₂ S	(n)
HgS	(n)
CoAsS	(n)
CuS	(n)
Cu₃AsS₄	(n)
PbS	(n)
$Na_2Ca(SO_4)_2$	(n)
AsS_3	(n)
Ag_3SbS_3	(n)
FeS ₂	(n)
ZnS	(n)

(n)

(n)

(n)

(n)

(n)

(*), (***)

(*), (***)

ZnS

 Ag_5SbS_4

Sb₂S₃

 Ag_3SbS_3

AgBr

AgCl

Ag₃Sb

 Ag_5SbS_4

^{*} Indicates hygroscopic and could be damaged by high electron fluxes

^{**} Available at \$500.00 instead of the basic price of our catalog #8060

^{***} These standards are of the highest purity currently available. Certificates of analyses are issued, as per order, at a nominal charge. Please inquire.

⁽n) designates a natural mineral while (s) designates a synthetic mineral. Certificates of analyses for the natural(n) are issued at a nominal charge. Please inquire.

	TANTALUM (Ta)
Та	
	TELLURIUM (Te)
Те	
As_2Te_3	(***)
CdTe	(***)
GeTe	
HgTe	
PbTe	
TeO ₂	
	TERBIUM (Tb)
Tb	
	THALLIUM (TI)
Tl₂Se	
	THULLIUM (Tm)
Tm	
TIN (Sn)	
Sn	
SnO ₂	(n)
SnO ₂ SnSe	(n)

TITANIUM (Ti)				
Ti				
BaTiSi ₃ O ₉	(n)			
TiO ₂	(n)			
TiO ₂				
FeTiO₃	(n)			
CaTiSiO₅	(n)			
TUNGSTEN (W)				
W				
$CaWO_4$	(n)			
VANADIUM (V)				
V				
$Pb_5(VO_4)_3CI$	(n)			
YTTERBIUM (Yb)				
Yb				
ZINC (Zn)				

Zn ZnCO₃ ZnS	(n) (n)				
ZnSe					
ZIRCONIUM (Zr)					
Zr					
$ZrSiO_4$	(n)				

^{*} Indicates hygroscopic and could be damaged by high electron fluxes

^{**} Available at \$500.00 instead of the basic price of our catalog #8060

^{***} These standards are of the highest purity currently available. Certificates of analyses are issued, as per order, at a nominal charge. Please inquire.

⁽n) designates a natural mineral while (s) designates a synthetic mineral. Certificates of analyses for the natural(n) are issued at a nominal charge. Please inquire.

	STEEL / IRON ALLOYS					
trs®#		trs #				
11h	NIST STEEL BASIC, open hearth C 0.2, Mn 0.5, Si 0.2; Fe balance + traces	464	NIST LOW ALLOY STEEL-D, C 0.5, Mn 0.94, Si 0.5, V 0.3, Fe balance + traces			
12h	NIST STEEL BASIC, open hearth C 0.4, Mn 0.8, Si 0.2; Fe balance + traces	465	NIST INGOT IRON-E, Ti 0.2, Al 0.2; Fe balance + traces			
13g	NIST STEEL BASIC, open hearth C 0.6, Mn 0.8, Si 0.3; Fe balance + traces	466	NIST INGOT IRON-F, Mn 0.11; Fe balance + traces			
14f	AISI 1078 CARBON STEEL , C 0.75, Mn 0.4, Si 0.2; Fe balance + traces	468	NIST LOW ALLOY STEEL-H, C 0.26, Mn 0.5, Cu 0.26, Ni 1.03; Fe balance + traces			
16e	NIST STEEL BASIC, open hearth C 1.1, Mn 0.4, Si 0.2; Fe balance + traces	479a	NIST AUSTENITIC STAINLESS STEEL , Ni 1.09, Cr 18.1, Fe balance + traces			
26	REFRACTORY , Cr 18.0, Fe 18.0, Co 20.0, Ni 37.0, Mo 3.9	483	NIST Fe/Si ALLOY, Si 3.3, Fe 96.7; traces			
32e	NIST STEEL SAE 3140 , C 0.4, Mn 0.8, Si 0.3, Ni 1.2, Cr 0.7; Fe balance + traces	600	INCONEL, Cr 15.5, Fe 8.0, Ni 74.7; traces			
C46	KOVAR , Fe 53.0, Co 17.0, Ni 29.0	661	AISI 4340 STEEL , C 0.39, Mn 0.66, Si 0.223, Ni 2.00, Cr 0.69, Mo 0.20; Fe balance			
304	STAINLESS STEEL , Cr 19.0, Mn 1.5, Fe 69.7, Ni 9.25; traces	662	AISI 94B17 STEEL MODIFIED , Mn 1.05, Si 0.40, Cu 0.51, Ni 0.60, Cr 0.30, Ta 0.21; Fe balance			
308	STAINLESS STEEL 1197 , Cr 12.9, Ni 32.6, Mo 3.2, W 6.0, Ti 3.32; Fe balance + traces	663	Cr-V STEEL MODIFIED , C 0.57, Mn 1.5, Si 0.74, Cr 1.31, V 0.31; Fe balance + traces			
316	STAINLESS STEEL C44 , Cr 17.61, Mn 1.7, Mo 2.27, Ni 12.44; Fe balance + traces	664	NIST HIGH CARBON STEEL MODIFIED, C 0.87, Mn 0.25, Cu 0.25, Mo 0.49, Ti 0.23; Fe balance			
342a	NIST NODULAR CAST IRON, C 1.9, Mn 0.3, Si 2.73, Cu 0.13; Fe balance	665	NIST ELECTROLYTIC IRON , Fe 99.9% plus trace elements.			
410	STAINLESS STEEL , Cr 11.5-13.5, Mn 1.0, Si 1.0; Fe balance + traces	1134	HIGH-SILICON STEEL , Si 3.20, Al 0.33; Fe balance + traces NIST			
440c	STAINLESS STEEL , Cr 16-18, Mn 1.0, Si 1.0; Fe balance + traces	1135	HIGH-SILICON STEEL , Si 3.20; Fe balance + traces			
461	NIST LOW ALLOY STEEL-A, C 0.15, Mn 0.36, Cu 0.34, Ni 1.73; Fe balance + traces	1155	AISI 316, NIST STAINLESS STEEL, Cr 19.0, Ni 14.0, Mo 3.0; Fe balance + traces			
462	NIST LOW ALLOY STEEL-B, C 0.4, Mn 0.94, Si 0.3, Ni 0.7, Cr 0.74; Fe balance + traces	1157	TOOL STEEL AISI M-2 , C 0.84, Mn 0.34, Cr 4.36, V 1.82, Mo 4.86, W 6.28; Fe balance + traces			
463	NIST LOW ALLOY STEEL-C, C 0.2, Mn 0.94, Si 0.3, Cu 0.5, Ni 0.4, Fe balance + traces					

Typical analyses are given for identification information only. Exact analysis furnished with each purchase.

ALUMINUM ALLOYS

trs #:

SS332 ALUMINUM K21,Si 9.9, Fe 0.72,

Cu 3.21, Mg 1.01, Ni 0.53; Al balance + traces (ALCOA)*

KB356 ALUMINUM 422, Si 7.50, Mg 0.45;

Al balance + traces (ALCOA)*

SSA357 ALUMINUM,Si 7.1, Mg 0.6;

Al balance + traces (ALCOA)*

KD380 ALUMINUM 71, Si 9.14, Fe 1.13,

Cu 3.59, Mn 0.34, Sn 2.76, Al balance + traces (ALCOA)*

SS384 ALUMINUM AG13, Si 11.5, Fe 1.0,

Cu 3.5, Zn 0.6,

Al balance + traces (ALCOA)*

WA1199 ALUMINUM (PURE),

traces less than .002 each (complete certificate of analysis by ALCOA and tousimis® laboratories included)

630 ALUMINUM BRONZE, Al 10.0,

Cu 81.6, Fe 3.10, Ni 4.50, traces

C1255 NIST ALUMINUM CASTING 356.

Si 7.17, Mg 0.35, Ti 0.15, Al balance

LEAD / TIN ALLOYS

AVAILABLE AS INDIVIDUAL ALLOYS NOT AS A GROUP

Pb-Sn 90%-10%

Pb-Sn 70%-30%

Pb-Sn 60%-40%

Pb-Sn 50%-50%

Pb-Sn 37%-63%

NB-TUNGSTEN 20% MOLYBDENIUM ALLOY (NIST)

480** W 78.5, Mo 21.5

BRASS ALLOYS

478 CARTRIDGE BRASS, Cu 72.8, Zn 27.1

(NIST)

670 BRASS, Al 4.73, Mn 3.97, Fe 3.07,

Cu 63.90, Zn 24.10; traces

1103 FREE-CUTTING BRASS WROUGHT,

Cu 59.3, Zn 35.7, Pb 3.73, Fe 0.3, Sn 0.9;

traces (NIST)

1106 NAVAL BRASS-A, Cu 59.0, Zn 40.0;

traces (NIST)

GOLD / COPPER ALLOY (NIST)

THE TWO ELEMENTS AND FOUR ALLOYS

NIST®-SRM 482 Au-Cu SYSTEM

Au.....100%

Au-Cu.....80%+20%

Au-Cu.....60%+40%

Au-Cu.....40%+60%

Au-Cu.....20%+80%

Ag.....100%

GOLD / SILVER ALLOY (NIST)

THE TWO ELEMENTS AND FOUR ALLOYS

NIST®-SRM 481 Au-Ag SYSTEM

Au.....100%

Au-Ag.....80%+20%

Au-Ag.....60%+40%

Au-Ag.....40%+60%

Au-Ag.....20%+80%

Ag.....100%

Typical analyses are given for identification information only. Exact analysis furnished with each purchase.

^{*} Registered trademark of the Aluminum Company of America.

^{**} Registered trademark of the National Institute of Standards and Technology.

	GLASS STANDARDS
93a	BOROSILICATE GLASS , SiO ₂ 80.8, B ₂ O ₃ 12.5, Na ₂ O 3.9, Al ₂ O ₃ 2.2 (NIST)
402	STANDARD GLASS , Si 37.40, Al 1.32, Na 2.86, B 3.99 + Oxygen
404	STANDARD GLASS , Si 32.50, Al 1.60, Ca 3.03, Zn 2.65, Na 11.5, F 4.96 + Oxygen
405	STANDARD GLASS , Si 34.00, Al 0.60, Ca 4.65, Mg 1.7, Na 11.6, K 0.40 + Oxygen
408	STANDARD GLASS, Si 26.34, Pb 28.4, K 9.8 + Oxygen
621	SODA-LIME GLASS CONTAINER, SiO ₂ 71.13, Na ₂ O 12.74, CaO 10.70, Al ₂ O ₃ 2.76, K ₂ O 2.00 (NIST)

^{*} Registered trademark of the Aluminum Company of America.

^{**} Registered trademark of the National Institute of Standards and Technology.

Typical analyses are given for identification information only. Exact analysis furnished with each purchase.

