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A B S T R A C T

Polysaccharide aerogels are a good alternative as carriers for drug delivery, since they allow high loading of the
active compounds in matrices that are non-toxic, biocompatible and from a renewable feedstock. In this work,
barley and yeast β-glucans aerogels were produced by gelation in aqueous solution, followed by solvent ex-
change and drying with supercritical CO2. First, viscoelastic properties and melting profile of the hydrogels were
determined. Then, the obtained aerogels were analyzed regarding morphology, mechanical properties and be-
havior in physiological fluid. Both in the hydrogels and in the aerogels, big differences were observed between
barley and yeast β-glucans due to their different chain structure and gelation behavior. Finally, impregnation of
acetylsalicylic acid was performed at the same time as the drying of the alcogels with supercritical CO2. The
release profile of the drug in PBS was analyzed in order to determine the mechanism governing the release from
the β-glucan matrix.

1. Introduction

Aerogels are solid materials possessing low density, high porosity
and high surface area. These properties allow their use in a wide variety
of applications, from hydrogen storage [1] to tissue engineering [2].
Among them, aerogels are of particular interest in drug delivery of
active compounds, since they offer higher loading capacity due to their
surface properties [3,4].

Aerogels are formed from an initial gel on aqueous phase which
undergoes a drying process. Traditional drying methods, such as air-
drying or freeze-drying, produce unwanted changes in the structure of
the gel, leading to great shrinkage or even destruction of the network.
On the contrary, drying with supercritical fluids avoids network col-
lapse due to the absence of liquid-gas interfaces, so the porous structure
is better preserved [5]. Besides, with supercritical fluids, incorporation
of active compounds into the aerogel can be done simultaneously to the
drying process, thus reducing processing steps and avoiding the use of
organic solvents and high temperatures associated to the preparation of
drug-loaded delivery systems [6]. The performance of the impregnation
in supercritical fluids allows good solubility of the active compounds

and diffusion through the matrix, and at the same time the structure of
the matrix is well preserved. After the impregnation and upon de-
pressurization, the final product is recovered free of any solvent and no
further purification steps are required. Furthermore, supercritical im-
pregnation enhances the penetration of the active compound into the
polymeric matrix, providing a homogeneous distribution of the drug in
the material [7].

To fulfill the requirements of low toxicity, biodegradability and
stability for drug delivery applications, polysaccharides are a good
option as carriers [8]. Many works report the production of aerogels
using starch, alginate or chitin [8–14]. However, β-glucans have been
barely studied for this purpose. To the author’s knowledge, only Comin
and coworkers produced aerogels exclusively with barley β-glucans
[15]. They observed that supercritical-dried β-glucan aerogels had
lower density and more homogeneous structure than the ones air-dried
and freeze-dried. They also analyzed the supercritical impregnation of
flax oil in the aerogels [16].

β-glucans are polymers formed by D-glucose monomers linked by β-
glycosidic bonds. They can be found in cereals, algae, yeast or bacteria,
with very different structures and characteristics. β-glucans have some
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valuable features regarding processing, i.e. they increase the viscosity
of solutions and can easily form hydrogels by heating [17,18]. Several
works studied the ability of β-glucans to form gels by hydrogen bonding
in junction points [19,20]. However, great differences are observed
depending on the origin of the β-glucans, their structure, molecular
weight or concentration. For instance, hydrogels are more easily cre-
ated with low molecular weight β-glucans (from 20 kDa) because they
enhance entanglement of polymer chains, whereas high molecular
weight β-glucans (above 200 kDa) have less mobility and thus worse
gelling capacity [20,21].

β-glucans are being used for medical and pharmaceutical applica-
tions due to their interesting biological properties, such as wound
healing ability, modulation of the immune system, anti-inflammatory
or anti-bacterial properties [22,23]. In this sense, the European Food
Safety Authority has recognized the ability of oat and barley β-glucans
to lower blood cholesterol and thus reduce the risk of heart disease
[24]. Apart from the aforementioned biological properties, some works
report the protective effect of different β-glucans in oral drug delivery.
On one hand, they protect the stomach against the formation of ulcers
derived from intake of some drugs [25,26]. Further, cereal β-glucans
enhance the growth of probiotics in the digestive tract [27]. On the
other hand, β-glucans also protect the encapsulated active compounds
through the acidic gastric medium to reach undamaged the adsorption
sites in the intestine [28,29]. Also β-glucans from cereals and from
fungi are reported to improve the permeability of active compounds
through the skin into deeper layers [30,31].

In this work, β-glucan aerogels are produced by supercritical drying
in CO2, aerogels were characterized and their potential as oral drug
delivery systems was evaluated.

2. Materials and methods

2.1. Materials

Gels were produced from 2 types of β-glucans: barley (1–3, 1–4)-β-
glucans (BBG, 75% purity, 125 kDa determined by size exclusion
chromatography as indicated in [32], with β-glucan standards by
Megazyme ranging from 40 to 359 kDa); Glucagel, kindly supplied by
DKSH, France) and (1–3, 1–6)-β-glucans from yeast Saccharomyces
cerevisae (YBG, 64% purity, measured with β-Glucan Assay Kit
(Yeast &Mushroom), by Megazyme; L-Naturae Nutraceutical, kindly
supplied by Naturae, Spain). Acetylsalicylic acid (Sigma, Portugal) was
used as model active compound for the impregnation of the aerogels.
PBS (pH 7.4) was prepared from tablets (Sigma). Carbon dioxide
(99.998 mol%) was supplied by Air Liquide (Portugal). All reagents
were used as received.

2.2. Production of β-glucan aerogels

Fresh solutions of 4 and 5% w/w BBG were produced by mixing the
β-glucans with water at 80 °C for 2 h with stirring, until complete dis-
solution. Solutions with concentration lower than that were not able to
create a gel. When it was completely dissolved, it was boiled for 5 min,
and then kept at 75 °C for 1 h. The hot solution was poured into 96-well
plate molds and kept overnight at 4 °C to form the gel. Longer time
periods, up to 72 h, were required as the polymer concentration de-
creased.

YBG was dispersed in water under stirring for 30 min. 5 and 2.5%
w/w gels were obtained after heating at 90 °C for 1 h. After that time,
the solution obtained was poured into a mold and kept at 4 °C over-
night.

Gels samples were taken out from the mold and cylinders with 5 mm
diameter and 10 mm height were obtained.

Hydrogels were converted into alcogels by subsequently immersing
them in 20, 40, 60 and 80% v/v ethanol:water baths for 1.5 h each, and
kept in pure ethanol overnight. Then they were dried with supercritical

CO2 in a critical point drier at 34 °C and 9-9.5 MPa, with 2 drying cycles
(Autosamdri-815, Tousimis).

2.3. Supercritical impregnation of acetylsalicylic acid

In order to minimize processing steps, impregnation of 4% (w/w)
BBG and 2.5% (w/w) YBG alcogels with acetylsalicylic acid was per-
formed simultaneously to the drying of the alcogels with supercritical
CO2. The alcogels were placed on a high-pressure cylinder immersed on
a water bath. At the inlet, AA was placed on excess and separated from
the alcogels with cotton to prevent physical contact with the alcogels.
Carbon dioxide was first cooled and pumped (Haskell, MCPV-71) to the
desired pressure, and then fed into the high-pressure vessel. A con-
tinuous flow of CO2 was maintained for 1.5 h, which is the time ne-
cessary to completely remove ethanol from the structures. Due to the
configuration of the drug and the polymer in the vessel, AA was first
dissolved on sc-CO2. When the saturated flow of CO2 contacted the BBG
and YBG matrices, they were impregnated with AA. Impregnation yield
was determined at different conditions of pressure (8, 12, 16 and
20 MPa) and temperature (35, 40 and 50 °C). Further information about
the equipment can be found in the literature [33,34].

2.4. Rheological tests

Viscoelastic properties of β-glucan hydrogels were evaluated on a
Kinexus Prot Rheometer (Kinexus Prot, MAL1097376, Malvern) fitted
with a parallel plate geometry with 10 mm of diameter (PU8 SR2020
SS). Oscillatory measurements were performed at 1% strain in a range
on frequency of 0.01–100 Hz at 25 °C in order to obtain the elastic (G’)
and loss (G”) moduli and the complex viscosity. The thermal stability
and the melting behavior of the gels was analyzed in hydrogels cured
for 24 h, through a temperature ramp with controlled frequency and
strain, at 1 Hz, 1% strain and heating rate of 2.5 °C/min. All measure-
ments were performed in triplicate.

2.5. Morphological analysis

The produced aerogels were observed by scanning electron micro-
scopy (SEM) with a high-resolution field emission scanning electron
microscope with focus ion beam (Auriga Compact, Zeiss). The aerogels
were cut in liquid nitrogen and the sections were placed by mutual
conductive adhesive tape on aluminum holders and covered with gold
palladium using a sputter coater.

Nitrogen adsorption-desorption isotherms were performed with
ASAP 2020 (Micromeritics) to obtain surface area and pore size and
volume of the aerogels. Prior to analysis, the samples were degassed at
115 °C for 4 h.

Aerogel density was determined with a helium pycnometer
(Micromeritics Accupyc II 1340) at 25 °C from 10 replicates (standard
deviation lower than 0.5%).

2.6. Mechanical analysis

Behavior of the aerogels under compression stress was analyzed
with a universal testing machine (Instron 5540). Compression of the
material was carried out at 1 mm/min until the height of the sample
was reduced by 70%. The compressive Young modulus was determined
as the initial slope in the stress-strain graphs. Aerogels were tested also
after rehydrating them in PBS for 2 h, to mimic a physiological en-
vironment. In this case, it was also possible to obtain the maximum
stress that can be applied until break of the material. The tests were
performed in triplicate and the results are presented as the
average ± standard deviation.
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2.7. Water uptake and degradation test

Aerogel samples were placed in 5 mL PBS, and immersed in a stirred
water bath at 37 °C. At different time points (1, 7, 14 and 21 days),
samples were taken out (excess water was removed with paper) and
weighted.

Water uptake was determined using the following equation:

=
−

×
w w

w
% water uptake 100w i

i (1)

where ww is the weight of the wet sample and wi is the weight of the
initial sample.

Afterwards, the wet aerogels were changed to ethanol and dried
with supercritical CO2, as indicated in Section 2.2, to ensure the com-
plete drying of the matrix. Once the samples were dried, they were
weighted (wf) to determine the weight loss, which was calculated ac-
cording to the equation:

=

−

×

w w
w

% weight loss 100f i

i (2)

Water uptake and degradation test was performed in triplicate, and
up to 21 days.

2.8. Impregnation yield

The amount of AA impregnated in the aerogels was quantified by
UV–vis at 290 nm using a microplate reader (Synergy HT, Bio-Tek
Instruments, USA) in a quartz microplate with 96 wells (Hellma). First,
the aerogels were completely dissolved in 5 mL PBS to ensure that all
the AA was extracted from them. Then, a sample of the liquid was
analyzed by UV–vis, and the absorbance was adjusted into a calibration
curve between 0 and 1 g/L. The influence of BBG and YBG on the
measured absorption was taken into account in the calculations by
measuring the absorption obtained with an aerogel without AA and
subtracting this value to the results of the absorbance of the samples
with AA.

2.9. In vitro release study

The impregnated aerogels were placed on 5 mL PBS in a bath at
37 °C. Samples (150 μL) of the liquid medium were taken out at dif-
ferent time points (5, 10, 15 and 30 min, and 1–8 and 24 h), and re-
placed by the same quantity of fresh PBS. The amount of AA on the PBS
at each time was measured by UV–vis spectrophotometry as mentioned
before. The replacement of the aliquot with fresh PBS was taken into
account in the calculations of the cumulative release of AA. All mea-
surements were performed in triplicate.

The kinetics of release of AA was analyzed with the Power Law
equation (Eq. (3)) [35]:

=
∞

M
M ktt n

(3)

Where Mt is the cumulative quantity of AA released at time t, M∞ is the
theoretical amount released at infinite time (maximum AA in the
aerogel), k is a constant characteristic of the drug-polymer system and n
is the diffusional exponent characteristic of the release mechanism.

3. Results and discussion

3.1. Rheological study of β-glucan hydrogels

The variability on origin and chain structure between BBG and YBG
leads to different behavior of both β-glucans. For instance, as it was
mentioned before, BBG are soluble in water, but YBG are not. This has
consequences on the gelling mechanism (upon cooling for BBG, upon
heating for YBG) and chain organization of the polymer in the gels, and
reflects on the production of hydrogels with different properties de-
pending on the type of β-glucan used. The differences in the structure of
the hydrogels will ultimately have influence also on the structure and
properties of the final aerogels.

Fig. 1 shows the response of the different β-glucan hydrogels over a
frequency range. It can be observed that for all of them the elastic gel
network is maintained in a wide range of low frequencies, characterized
by higher G’ than G” (solid-like behavior), and both with values in-
dependent of the frequency. However, at higher frequencies, G’ and G”
become equal, revealing the rupture of the gel structure.

Although both β-glucans create the gel structure through junction
zones due to hydrogen bonding [36,37], these are much stronger in
YBG [38], and thus they resist oscillatory stress up to higher frequency
(i.e. up to 4 Hz for 5% BBG, and up to 8 Hz for YBG). Up to the fre-
quency values of G′= G″, the gels were able to rearrange their chains
around the junction points and resist shear stress, but when the fre-
quency was further increased the junction points were damaged and the
gel was broken. This behavior was also confirmed with the results of
complex viscosity (Fig. 2a). Complex viscosity decreases with frequency
for both β-glucans as a consequence of the rearrangement of the gels up
to the values of frequency aforementioned where the structure of the
gel was destroyed. Nevertheless, at low frequency, complex viscosity is
higher for YBG than for BBG, revealing more interaction between
polymer chains in the YBG hydrogel.

G’ increased with the concentration of YBG, indicating more elastic
and more stable gel network at higher β-glucan concentration, probably
due to more junction points with more quantity of polymer. This dif-
ference with concentration was not so noticeable for BBG because the
range of β-glucan concentration tested was smaller. Gels of 4% BBG had
almost the same moduli as 5% BBG, with the values of G’ slightly
higher. At 5% β-glucan concentration, BBG had much smaller G’ than
YBG, indicating less elasticity of the gel. Some authors reported that
molecular weight of the β-glucan has a great influence on their vis-
coelastic properties [21]. It is also possible that BBG polymer chains are
more rigid than those of YBG, because the (1–3, 1–6)-β-glucan structure
of the latter induces more voiding space between the chains, which
allows better movement and rearrangement of the chains and thus more
elasticity of the gel.

Fig. 1. G’ (closed symbols) and G” (open symbols) of
(a) 2.5% YBG (♦), 5% YBG (■) and (b) 4% BBG (●)
and 5% BBG (▲) hydrogels over a range of fre-
quency in oscillatory measurements.
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The stability of the hydrogels was tested following the mechanical
properties as a function of temperature, in a range from 20 to 70 °C.
Higher temperatures were not tested as water started to evaporate at
this point. By heating the hydrogels (Fig. 2b) it was observed that G’
started to decrease at around 50–55 °C for BBG, reflecting a loosening in
the chain entanglements. This point marks the beginning of the melting
of the gel. However, G’ was kept constant for YBG over the range of
temperature tested.

According to this result, the formation of BBG gel is a temperature-
reversible process, while the gelling is irreversible for YBG upon
heating. This is in accordance with the stronger hydrogen bonds in YBG
hydrogel aforementioned.

3.2. Morphological characterization of β-glucan aerogels

β-glucan aerogels were successfully dried with supercritical CO2,
preserving the structure without shrinkage during the drying process.
However, the gels underwent a noticeable shrinkage during solvent
exchange, especially YBG gels, because they were formed from an
aqueous suspension instead of a solution (Fig. 1S). Whereas BBG formed
a packed structure of polymer layers, YBG had more free space between
the junction points. Thus, when solvent was changed from water to
ethanol, the organization of the network was better maintained with
BBG than with YBG.

All of the formed aerogels had a compact network, although the
ones with lower concentration presented a more porous structure
(Fig. 3). Nevertheless, the matrix was thicker with YBG, while BBG
aerogels had more spongy-like structure. The same effect of the con-
centration and type of β-glucan was also observed by the analysis of
density (Table 1). When the concentration of polymer increased, the
density of the aerogels also increased, especially in the case of YBG,
which had a broader concentration range. Similarly, at 5% β-glucan,
density was higher for YBG than for BBG, in accordance with the ob-
servation of thicker structure by SEM. These results were further con-
firmed by the mechanical tests. This might be a consequence of the
different behavior of both β-glucans during hydrogel formation and
solvent exchange from water to ethanol.

Surface area, pore volume and pore diameter were higher for BBG
than for YBG aerogels, although with slight differences between them at
the same concentration (Table 1). For each type of material, differences
with the concentration could only be noticed for YBG, since the range
tested was bigger. The values obtained in this work are in the range of
the ones obtained with BBG by [15], except pore size, which was
2.7 nm. The cause of this difference can be associated to the higher
pressure of CO2 that they used to dry the gels, which could reduce the
size of the pores and create a more uniform distribution, similarly to the
changes in pore size with pressure observed in polymer foaming [39].
Also, depressurization rate is one of the parameters that influences pore
size on supercritical drying of aerogels [40].

As an example, Fig. 2S shows the adsorption-desorption isotherm

and pore size distribution of the sample of 5% YBG. The shape of the
adsorption-desorption isotherms corresponds to a type IV isotherm,
according to the IUPAC classification. This type of isotherm is char-
acterized by a hysteresis loop, which is produced due to condensation in
the capillaries. The initial part of the isotherm indicates that first there
is monolayer adsorption, and, after a plateau, multilayer is formed [41].
Type IV isotherm is typical of mesoporous materials [42], and has also
been observed in some other works with polysaccharide aerogels
[15,43]. All samples had unimodal pore size distribution, although the
peak was centered in 8–10 nm in the case of YBG and 18–22 nm for
BBG.

3.3. Mechanical properties

The resistance of the aerogels to compression stress has shown to be
highly dependent not only on the concentration, as it would be ex-
pected, but also on the type of β-glucan. YBG had values of compressive
Young modulus almost 1-fold higher than BBG (Table 2). The linear
polymer chains of BBG arranged parallel one to each other, and this
kind of structure is less resistant. On the contrary, the crosslinked
structure of YBG chains allowed the achievement of higher Young
modulus, and thus stronger material. With both β-glucans, Young
modulus increased with polymer concentration. After rehydration of
the aerogels on PBS, Young modulus was greatly reduced in all cases.
Although all the materials produced had low stiffness, the values are in
the range of those found for other polysaccharides aerogels such as
alginate, lignin or starch [2,40], and are higher than others reported for
BBG cryogels [36].

The different behavior of the dry and wet aerogels can be noticed by
observation of the stress-strain curves. On one hand, dry aerogels had a
linear region which corresponds to elastic deformation, and after some
point plastic deformation occurred. In these cases, yield strain was
between 10 and 15%. On the other hand, the wet samples had a region
of elastic deformation up to higher strain (20–30%), but afterwards
they collapsed instead of suffering plastic deformation. Fig. 3S shows,
as an example, the stress-strain curves of dry and wet samples of 5%
YBG. Maximum stress at failure of the wet aerogels was in the range
between 5 and 13 kPa. YBG were able to bear higher load than BBG,
and also the resistance increased with the concentration of polymer.
This is in agreement with the rheological behavior of the hydrogels,
which revealed higher resistance to shear stress with YBG rather than
BBG.

3.4. Behavior on physiological fluids

Water uptake has a strong influence in the release of active com-
pounds from the matrix: if it absorbs much water, drugs can diffuse
more easily to the liquid medium. To the author’s knowledge, there are
not previous studies about water uptake capability of β-glucan aerogels,
although it has been reported for freeze-dried β-glucans. For instance,

Fig. 2. (a) Complex viscosity for 5% (w/w) BBG
(closed symbols) and YBG (open symbols). (b)
Melting profile of 2.5% YBG (line) and 5% BBG
(dots) hydrogels at 0.1% strain, 1 Hz and heating
rate 3 °C/min.
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Lazaridou and coworkers found that swelling and equilibrium water
content of BBG lyophilized cryogels decreased with higher β-glucan
molecular weight because of a more compact and less porous structure
[36].

Upon soaking on physiological fluid, it was easily observed that β-
glucan aerogels swelled. In all samples, the maximum water uptake was
reached after 24 h in a physiological solution and it remained around

that value without significant differences for the rest of the days
(Fig. 4). Besides, weight loss was lower than 20% in all cases after
21 days. This high water uptake capacity is related to the hydrophilicity
of the β-glucans. Also, some previous works also reported a fast and
high water uptake by other polysaccharide aerogels [2].

It was observed that, for each β-glucan, water uptake was higher
with lower concentration of polymer. This is in agreement with some
previous works reporting slower and smaller swelling of polysaccharide
aerogels with higher polymer concentration due to the presence of more
chain entanglements [44,45]. For 5% w/w β-glucan, water uptake was

Fig. 3. SEM images of 2.5% (a and c) and 5% (d)
YBG aerogels, and 4% (b and e) and 5% (f) BBG
aerogels.

Table 1
Structural properties of the different β-glucan aerogels.

Sample BET surface area Pore volume Pore size Density

(m2/g) (cm3/g) (nm) (kg/m3)

2.5% YBG 173.1 0.563 13.7 34.8
5% YBG 178.2 0.659 15.5 121.1
4% BBG 189.4 0.713 15.8 69.0
5% BBG 184.1 0.705 16.1 79.3

Table 2
Compressive Young modulus of dry and wet β-glucan aerogels.

Young modulus (kPa)

Dry Wet

2.5% YBG 286 ± 51 0.38 ± 0.07
5% YBG 448 ± 107 0.36 ± 0.08
4% BBG 58 ± 14 0.21 ± 0.03
5% BBG 69 ± 21 0.27 ± 0.08

Fig. 4. Water uptake of the different β-glucan aerogel samples up to 3 weeks. Squares:
YBG. Triangles: BBG. Grey: low β-glucan concentration. Black: high β-glucan con-
centration.
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much higher for YBG.

3.5. Supercritical impregnation of acetylsalicylic acid

Supercritical impregnation of active compounds is composed by 2
main steps. The first one is the dissolution of the active compound in sc-
CO2, which depends on its solubility in CO2 (and, ultimately, on the
density of CO2). The second step is the penetration of the active com-
pound in the polymeric matrix, and it is influenced by the diffusion of
CO2 into the structure. Both are highly dependent on the properties of
supercritical CO2, and therefore pressure and temperature are key
parameters in this process.

The conditions were chosen such that, temperature and pressure
employed in the impregnation did not induce any changes on the
morphological and mechanical parameters of the aerogels produced.
The amount of AA impregnated in the aerogels depends greatly on the
operating conditions and on the type of β-glucan tested (Fig. 5). In the
case of BBG, at low pressure (below 12 MPa), impregnation yield is
higher at lower temperature. The same trend with pressure and tem-
perature is reported in the literature for the solubility of AA on sc-CO2,
which presents a crossover point at around 12.5 MPa [46]. In the case
of BBG impregnated with AA, between 12 and 16 MPa, there is a
crossover so that, at higher pressure, impregnation yield increases with
temperature. Thus, supercritical impregnation of AA in BBG aerogels is
mainly influenced by the dissolution of AA in supercritical CO2.

In the case of YBG, the impregnation yield for the same conditions
of BBG shows in general terms the same order of magnitude of drug
impregnated in the aerogels. However, the concentration of AA seems
to decrease with the increase of the pressure, after the crossover
(12.5 MPa), while in BBG we observed an increase of the concentration
of aerogel with pressure. At 12 MPa, in YBG, it is observed a maximum
of drug impregnation in the aerogel. After the cross-over the impreg-
nation yield follows the expected trend, meaning a higher impregnation
at higher temperatures.

When these results are related to CO2 properties (Table 1S), it is

observed that with BBG the quantity of AA impregnated in the aerogel
has an increasing tendency with the density of CO2, because higher
density enhances the solubility. Thus, in this case the impregnation is
limited by the dissolution of the active compound on the CO2. On the
contrary, with YBG impregnation yield decreases with density but in-
creases with diffusivity. Hence in this case the limitation to the im-
pregnation process is the diffusion of CO2 inside the polymeric matrix.
This behavior can be also correlated with the lower surface area, pore
volume and pore size of 2.5% YBG compared to 4% BBG, so that for
YBG diffusion results in a key step in the impregnation process. Higher
impregnation load of AA could be achieved with longer processing
time, although in this work the flow of CO2 was maintained for 1.5 h
because this was the time required for a proper drying of the alcogel.

Nevertheless, drug loading in the aerogels was in the range between
8 and 15% (w/w) in all cases. These values are higher than typical
loadings of AA by supercritical impregnation reported in other previous
works with different matrices (below 4%), even though the impregna-
tion conditions were more severe in those works [47,48]. However, the
impregnation yield achieved in our work is comparable to that obtained
for the impregnation of ketoprofen in other polysaccharides, namely
alginate and starch, with similar processing conditions [5,49]. This is
expected and it is very difficult to establish comparisons between dif-
ferent systems as impregnation depends on both drug and polymer and
the affinity between them.

3.6. In vitro release of acetylsalicylic acid

The release of the active compounds from the polymeric matrix is
dependent on the water uptake capacity of the polymer and the diffu-
sion of the compound out of the matrix [50]. As both things are in-
herent of each material and independent of the impregnation condi-
tions, we chose just one set of parameters to analyze the release of AA,
namely 35 °C and 8 MPa, and evaluated the release profile in simulated
physiological conditions. The release profile was compared for BBG and
YBG (Fig. 6).

Fig. 5. Quantity of AA impregnated per mass of
aerogel (4% BBG(a) and 2.5% YBG(b)) at different
pressures and temperatures. Light grey: 35 °C; Dark
grey: 40 °C; Black: 50 °C.

Fig. 6. Cumulative release of acetylsalicylic acid per
mass of aerogel (4% BBG (a) and 2.5% YBG (b)).
Lines are added to guide the eye.

M. Salgado et al. Journal of CO₂ Utilization 22 (2017) 262–269

267



The release profile of AA from BBG shows an initial period (up to
3 h) of negligible release (lag time). Afterwards, from 3 to 8 h, AA was
released from the BBG matrix up to almost 60% of the total amount,
and this quantity was maintained for the next 16 h. This fast release
after the lag time is related to the high water uptake capacity of the
aerogel, even at short times (24 h).

The results obtained for release profile of AA from YBG show, on the
other hand, a fast release of the drug in the first 2 h and then the
quantity release of the drug increases slowly, presenting a more sus-
tained release profile. The differences between the two systems may be
explained by the differences encountered in the water uptake capacity
of the two β-glucans. According to the results of water uptake shown
previously, we observed a higher water uptake for the YBG aerogels
than for the BBG aerogels, which explains the differences between the
release profiles obtained (Fig. 6).

From the results obtained we confirmed that the release of AA from
2.5% YBG is more controlled than with 4% BBG. To confirm this hy-
pothesis we have modelled the release profile curves with empirical
equations, adjusted to each particular system. In the case of BBG it is
necessary to take into account the lag time. The lag time depends on the
thickness of the material from the surface to the active compound and
not on the impregnated quantity [51]. Therefore, the initial behavior
reveals a good impregnation of AA into the bulk of the β-glucan matrix,
instead of being deposited just on the surface (which would be char-
acterized by release of the active compound since the beginning). For
the PBS to reach and extract AA to the liquid medium, the matrix must
be first well-wetted and swelled. This delayed release can be very in-
teresting in oral delivery, for instance when drug release is supposed to
occur after a certain time since administration [52].

In order to analyze the release mechanism in the aerogels, a mod-
ification of Eq. (3) introducing the lag time (l) was required [53]:

= −
−

∞

M
M k(t 1)t 1 n

(4)

For BBG, the initial points of release during the lag time were not
considered for these calculations, as well as the points corresponding to
release higher than 60%. By plotting Ln(Mt-l/M∞) versus Ln(t-l), the
diffusion exponent n obtained was 0.72, with r2 = 0.8722 and k was
0.08 h−1.

In the case of YBG the power law (Eq. (3)) can be applied directly to
the experimental data by plotting Ln(Mt/M∞) versus Ln(t) up to 60% of
the maximum drug released. The diffusional exponent obtained in this
case was 0.57 with r2 = 0.9561, and k was 1.99 h−1.

For a cylindrical geometry, as it is this case, Eqs. (3) and (4) can be
used in swellable cylindrical matrices [54,55]. However, the geometry
of the matrix has to be considered in order to analyze the release me-
chanism governing in the system through the diffusion coefficient n.
Thus, for cylinders, n = 0.45 is indicative of diffusion-limiting release,
n = 0.89 define pure Case II transport (swelling-controlled release),
and values in between represent anomalous release, where both diffu-
sion and swelling influence the release. When n is greater than the value
of case II, the release is said to be super case II transport, with the active
compound releasing freely when water penetrates the matrix. Ac-
cording to the modelling of the experimental data obtained from the
release experiments, we can observe that the release of AA from both
BBG and YBG falls in anomalous transport, which is governed both by
diffusion and swelling of the matrix. This is in accordance with the
behavior observed with the release profile: the release started after
some initial time in which the aerogel was wetted and relaxation of the
chains took place. Once the material was swollen, AA was fast released,
without limitations due to diffusion of the active compound through the
polymer.

4. Conclusions

Barley and yeast β-glucan aerogels were prepared by supercritical

drying of hydrogels, after solvent exchange. Both β-glucans formed
different structures due to the differences in their chain configurations:
whereas the linear chains of BBG created a more rigid material, YBG
arranged in a highly crosslinked configuration, which allowed easier re-
arrangement of the chains in the gel network. This difference in the
gelation process led to re-dissolution of BBG hydrogels in water by
melting, while YBG hydrogels did not present this melting effect.
Besides, YBG hydrogels had more stability and elasticity than BBG ones.
This also reflected in the characteristics of the aerogels. Although the
morphological and structural properties of the aerogels were similar
with both β-glucans, YBG had bigger density, were stronger against
compression stress, and were able to absorb more water. Supercritical
impregnation of acetylsalicylic acid in BBG and YBG aerogels revealed
the influence of the process operating conditions on impregnation yield,
which was governed by dissolution of the active compound in the case
of BBG matrix and by diffusion of the compound into the matrix in the
case of YBG. In the case of BBG, the release of the drug from the matrix
in PBS showed an initial lag time, in which the structure was wetted
and relaxation of polymer chains occurred. This delayed release could
be an interesting feature for oral drug delivery in cases where a con-
trolled release after a certain time from administration is required. For
YBG, lag time was not observed, although the release achieved was
more sustained. However, a deeper analysis of the dissolution of AA in
acidic medium would be required.
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